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Notes 

Generation of the Weyl Group on a Computer 

I. INTRODUCTION 

The Weyl group of a root system in a finite-dimensional vector space is a group 
generated by reflections. These groups are important in a number of different 
applications. They are a special kind of reflection group [9], and the information 
gained from studying their generation can be used in studying presentations of 
reflection groups. The Weyl group occurs in the theories of symmetric spaces and 
real simple Lie algebras. It is essential in the computational aspects of the represen- 
tation theory of complex simple Lie algebras. For example, the Weyl group 
appears in Kostant’s formula [lo] for computing multiplicities of weights of irredu- 
cible representations of complex simple Lie algebras; it also enters into the Kostant- 
Steinberg formula for obtaining the multiplicities of the irreducible components 
in the tensor product of such representations. 

This paper describes a method for generating the Weyl group on a computer. 
Section II formulates the definition of the Weyl group from the Bourbaki point of 
view ]5,11]. For the more traditional formulation of the Weyl group the reader is 
referred to [l-3, lo]. Section III presents the method for generating the Weyl group 
on a computer. We have implemented this method on an IBM 360/75 system with 
a Fortran IV program. 

II. THE WEYL GROUP 

We start by defining a root system. The Weyl group will act on the root system 
in a way that is easily identifiable and simply converted to an algorithm for the 
computer program. 

In this paper, V denotes a finite-dimensional complex vector space. If R is a 
finite subset of V which generates V, then for each nonzero element 01 in V there 
exists at most one linear transformation s, mapping V onto itself and satisfying the 
following properties: 

(i) s,(a) = ---a. 
(ii) The subset of elements /3 of V for which s,(p) = /I is a hyperplane in I/. 
(iii) s,(R) = R. 
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A linear transformation s, of V onto itself satisfying properties (i) and (ii) is 
called a reJection associated with 01. 

A subset R of V is called a root system in Y if it satisfies the following properties: 

(iv) R is finite, generates V, and does not contain 0. 

(v) For each cx E R, there exists a reflection s, associated with (Y which 
satisfies (i), (ii), and (iii). 

(vi) For each 01 and p in R, s&!l) - /z? is an integer multiple of 01. 

The dimension of V is called the rank of R. 
Let R be a root system in V. A subset S = (01~ , 01~ ,..., a } of R is called a simple 

root system if it satisfies the following properties: 

(vii) S is a basis for V. 

(viii) Every element ,!I of R can be written as /I = C% mic+ , where the mi 
are integers which are all nonnegative or all nonpositive. The (Y~ are 
then called simple roots. 

Let R be a root system in V and let S C R be a simple root system. The WeyZ 
group W(R) of R is the group generated by the reflections sar , 01~ ES. It contains 
all reflections s, where /3 E R. 

It can be shown that if R is a root system in V there exists a symmetric positive 
definite bilinear form ( , ) on V which is invariant under the Weyl group W(R). 
This inner product makes V into a complex Euclidean space, and the elements of 
W(R) are then orthogonal linear transformations. Thus, each element of W(R) 
has determinant f 1. Moreover, it is not difficult to show that for each cy. E R we 
have 

for each /3 E V. 

Let aut(R) denote the set of automorphisms of V which leave R invariant and 
let aut(S) denote the set of automorphisms of V which leave both R and S invariant. 
Note that aut(S) is a subgroup of aut(R). 

THEOREM 1. W(R) is a normal subgroup of aut(R). 

Proof. We check normality on the generators of W(R). Let 01 E S and t E aut(R). 
Then from (1) it follows that ts,t-l = stcu) E W(R). 

THEOREM 2. aut(R) = W(R) * aut(S). That is, any t E aut(R) can be uniquely 
written as a product of an element in W(R) and an element in aut(S). (W(R) - auto 
is often called the semi-direct product of W(R) and aut(S).) 
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Proof. We need the following two results whose proofs can be found in 
Serre [l I]. 

LEMMA 1. If S and s’ are simple root systems of R, there is an element w of 
the Weyl group such that w(S) = S’. 

LEMMA 2. rfS is a simple root system and w E W(R) is such that w(S) = S, then 
w = identity. 

Now let t E aut(R). Then t(S) is a simple root system of R. Let w E W(R) be such 
that w(t(S)) = S. Then wt E aut(S) and t = w-4 where s E aut(S). For uniqueness, 
let t = ws = w’s’ where w, w’ E W(R) and s, s’ E aut(S). Then 

S’S+ = w(w’)-l E aut(S) n W 

and from Lemma 2, s’s-l = identity = w(w’)-l. Consequently, s = s’ and w = w’. 

Let S = (01~ , 01~ ,..., a,} be a simple root system of the root system R. We denote 
set , by sd for i = l,..., n. 

THEOREM 3. A presentation of the Weyl group W of R is 

generators: sr ,..., s, and relations: (~#‘~j = identity, 

where 

/ 

I if i =,j 
2 if i*j and (LYi ) aj) = 0 

pij = 3 if i*j and (cii ) cg = - 1 
4 if i*j and (ai, CQ) = -2 
6 if i#j and (OLi 3 aj) = -3. 

Proof. See Seminaire Chevalley [8]. 
From this presentation, it is seen that the class of Weyl groups is a subclass of 

the class of reflection groups [5,9, 111. 

where 

i 

1 if 
pij = 3 if 

2 if 

Proof. See Coxeter and Moser [9]. 

THEOREM 4. A presentation of the symmetric group S, is 

generators: s1 ,..., s, and relations (sisJPf~ = identity, 

i=j 

Ii-.i I=1 
Ii-j jfOor1. 
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If L is a complex simple Lie algebra of rank n and His a Cartan subalgebra of L, 
then H is a finite-dimensional complex vector space and its dual H* can be used 
as the vector space V in the above discussion. The inner product in H* is obtained 
as follows: If ( , ) is the Killing form in L, then for each a: E H* there exists a 
unique h, E H such that a(h) = (ha , h). We then define (01, /3) = (ha , hB) for each 
(Y and /3 in H*. 

The simple root systems of complex Lie algebras can be classified by their 
Dynkin diagrams giving the classical families: A, , B,(n 3 2), C&z 3 3), and 
O,(n > 4), and exceptional ones: E6, E, , Ep , F4 , G,(cf. [l-3, IO]). It should be 
noted that the Dynkin diagram is the Coxeter diagram used to classify reflection 
groups but also includes information about the length of each root, Coxeter 
diagrams can be defined for reflection groups without reference to root systems. 

A result which will be crucial for our generation of the Weyl group on a computer 
is the following theorem. 

THEOREM 5. If R is a root system of a complex simple Lie algebra of rank n, 
then S, is a subgroup of W(R). 

Proof. This follows by inspecting the root system of each complex simple Lie 
algebra in turn. 

III. GENERATION OF THE WEYL GROUP 

To classify root systems of simple Lie algebras by Dynkin diagrams one must 
construct models of each root system. In these models the root system is a subset 
of Euclidean space and the Weyl group can, in the case of the classical Lie 
algebras, be identified as permutations of indices or sign changes of the standard 
basis for the Euclidean space. 

An identification similar to the following example can be made for each of the 
exceptional algebras. 

EXAMPLE. For the root system of the simple Lie algebra F, , we have aut(F,) = 
W(F& since there are no nontrivial automorphisms of the simple root system of F4 . 
Also, it can be shown that W(F& = aut(oJ [5]. Then by using Theorem 2, we 
have W(F,) = W(Da * S, . 

The presentation of S, leads directly to the following recursion method for 
generating it. It is evident that S,-l is a subgroup of S, and is generated by 
s, ,..., s,-~ . Let T, = S,-, and Ti = Ti+r,+l-i , i = 2 ,..., n. Then S, = uy=, T1 . 
This algorithm is very easily programmed and is the basis of the Weyl group 
algorithm for each of the types of complex simple Lie algebras. 
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Let e1 , c2 ,..., E, be an orthonormal basis for an n-dimensional complex Euclidean 
space. For each simple Lie algebra, a root system and a simple root system can 
be described in terms of the E$ . For the classical Lie algebras, the Weyl group is 
given as a group of permutations on the indices of c1 ,..., E, and sign changes on 
the l i . For the exceptional ones, another description is provided. Using these 
descriptions we generate the Weyl group. For the classical ones we first generate S, 
and then construct a representative of each of the cosets in W/S, ; each coset can 
then be identified with a certain number of sign changes on the l i . 

We list below the specific technique used to generate the Weyl group of each type 
of Lie algebra. 

A, : The recursion algorithm for the symmetric group is used to generate 
S n+1* 

B, and C, : Each coset of S, is determined by the element of the Weyl group 
which changes the sign of each of l i, ,..., l ik where il < a+. < il, and 1 < k < n 
or by the identity element, which changes no signs. The element which changes the 
sign on ~~ is wi’ = s~s~+~ *.. s,s,-r a** si . However, because of the following two 
lemmas, the algorithm represents the sign change on ei by Wi = s,s,+ **. si and 
the sign changes on both Ei and l j , i < j, by Wij = s,s,-1 ... SiS,S,-r a.* Sj . 

LEMMA 3. Zf S, is presented as in Theorem 4 then Snsi = S, for any i = 1,. .., 
n - 1. 

LEMMA 3B. Using the presentation for W(B,) given in Theorem 3, we have 
wi’wj’ = wwij , where w E S, and i < j. 

Proof. We use induction on n - j. The following calculations are necessary 
for the induction step from IZ - j = k - 1 to n - j = k. 

D n : Each coset of S, is determined by the element of the Weyl group which 
changes the sign of each of ciI ,..., cisk where il < *.* < izk and 1 < k < [n/2] or 
by the identity element. The element which changes the signs on both ci and Ej , 
i < j, is vij = sisg+I *** s,-ls+ri+I *a* s,-2s,s,-2s,-3 .*a sts,-1s,-2 .*a sj . Because of 
Lemma 3, the algorithm represents this element as 

vij = S,S,-~S,-~ *" S&-l&-Z *** sj . 

A proof similar to that of Lemma 3B will show 
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LEMMA 3D. Using the presentation for W(D,,) given in Theorem 3, we haue 
I I 

uij"kl = Uuijkl 3 where u ES, , i<j<k<I,and 

COiCieqUently, the algorithm can represent U':jU';zUS Uijkt . 

E, : Each of these Weyl groups is too large for the present computer 
implementation. A possible approach is to generate the cosets of W(D,) in W(E,), 
the cosets of W(EJ in W(E,), and the cosets of W(E,) in W(E,). 

F4 : Each element of W(F’) is the unique product of an element of S, and 
one of W(D&. The algorithm hrst computes S, using the symmetric group algorithm. 
However, instead of denoting the generators by 1 and 2, they are denoted by 3 
and 4 so that the resulting words will be written in terms of the four generators 
for W(Fd defined by its Coxeter diagram. Next, W(D4) is generated by its algorithm. 
Then the generators for W(D ) s s s s 4 , 1 , 2 , 3 , 4 , are written in terms of the generators 
of W(FJ as: s1 = r,r,r,r,r,r,r, , s, = r, , s, = r2 , s, = r,r,r, , where r, ,..., r4 
are the generators for W(Fd defined by its Coxeter diagram. Finally, each word in 
S, is adjoined to every word in a copy of W(D4). 

G, : The simplest way to generate this group, the dihedral group of order 12, 
is by table look-up. 

We next describe the representation of an element in the Weyl group used in 
our program. Each element of the Weyl group is a finite product of the generators 
S ul ,..., s,” and it is represented in the computer by a string of integers iI , i2 ,..., il, 
where ii corresponds to s., . Thus, s~ls~,s+,soLIs~s is represented by the string 12313. 
This representation makes it particularly simple to compute the action of an element 
of the Weyl group on a vector in H* which is written either in terms of the basis 
of simple roots {c+ , 01~ ,..., a,} or in terms of the basis of fundamental weights 
6% 2 A2 ,***3 X,}. Thus, let 

Then s,*(w) is computed as 

( 

n 
ih , m2 ,--., m,) = ml , m2 ,..., m, - C alimi ,..., m, , 

i=l > 

581/7/z-11 
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or 
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44 , k, ,..., k,) = (k, - kiali , k, - kia,f ,..., k, - kia,J, 

where 

the (i,j) entry in the Cartan matrix. 

To handle large Weyl groups the string could be packed five digits per two bytes 
instead of the present one digit per two bytes. An alternative approach would be 
to use the more sophisticated methods of representation discussed by Cannon [6,7]. 

The method of storing the Weyl group in the computer is strongly dependent 
upon its intended use. For example, the entire Weyl group must be available in 
random access memory to evaluate multiplicities of the weights of an irreducible 
representation of a complex simple Lie algebra using Konstant’s formula. However, 
to find all the simple root systems of a complex simple Lie algebra each element 
need only be applied to the given simple root system as it is generated. 

As a pilot project, we have developed a program, written in FORTRAN IV 
for the IBM 360/75 system, to generate the Weyl group of the complex simple 
Lie algebras of rank at most 5. This program puts the entire Weyl group into the 
random access core memory. 
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